三级aa视频在线观看-三级国产-三级国产精品一区二区-三级国产三级在线-三级国产在线

English 中文網 漫畫網 愛新聞iNews 翻譯論壇
中國網站品牌欄目(頻道)
當前位置: Language Tips > 新聞選讀

“一父兩母”基因改造 可避新生兒先天缺陷
Dad may join two moms for disease-free designer babies

[ 2014-02-27 10:12] 來源:中國日報網     字號 [] [] []  
免費訂閱30天China Daily雙語新聞手機報:移動用戶編輯短信CD至106580009009

美國食品和藥物管理局日前舉行了一場聽證會,以探討一項旨在規避新生兒先天疾病風險的試管受精新技術是否能夠進入人體實驗階段。

借助這一新技術孕育的試管嬰兒將有“一父兩母”,并且此項產前基因操縱技術可能會使“定制嬰兒”成真。倫理學家擔憂,這將危及人類道德底線。

這一試管受精新技術的關鍵在于移除女性卵子線粒體中的缺陷基因。

早在2009年,美國俄勒岡健康與科學大學的科學家就利用“主軸移植”的方式,即用捐贈者卵子的健康線粒體替換母親的有缺陷線粒體后再實施人工授精,在獼猴身上實驗成功,生育出4只健康的小獼猴。

本月25日和26日,美國食品和藥物管理局邀請多名醫學專家和研究人員參加聽證會,以決定是否允許俄勒岡健康與科學大學的研究團隊將其實驗從獼猴轉至人類女性。

采用“主軸移植”方法后,新生兒將擁有自己父親、母親的基因,同時攜帶卵子捐贈者的少部分基因。也就是說,在基因層面,新生兒有兩位母親、一位父親。

一些倫理學家認為,這項技術的本質就是產前基因操縱,未來可能會進一步演變成按單生產定制嬰兒,顯然有違人類的倫理道德。

“一父兩母”基因改造 可避新生兒先天缺陷

A new technology aimed at eliminating genetic disease in newborns would combine the DNA of three people, instead of just two, to create a child, potentially redrawing ethical lines for designer babies.

The process works by replacing potentially variant DNA in the unfertilized eggs of a hopeful mother with disease-free genes from a donor. US regulators today will begin weighing whether the procedure, used only in monkeys so far, is safe enough to be tested in humans.

Because the process would change only a small, specific part of genetic code, scientists say a baby would largely retain the physical characteristics of the parents. Still, DNA from all three -- mother, father and donor -- would remain with the child throughout a lifetime, opening questions about long-term effects for this generation, and potentially the next. Ethicists worry that allowing pre-birth gene manipulation may one day lead to build-to-order designer babies.

“Once you make this change, if a female arises from the process and goes on to have children, that change is passed on, so it’s forever,” Phil Yeske, chief science officer of the United Mitochondrial Disease Foundation, said by telephone. “That’s uncharted territory; we just don’t know what it means. Permanent change of the human germline has never been done before, and we don’t know what will happen in future generations.”

FDA Hearing

The Food and Drug Administration is scheduled today and tomorrow to explore the issue at a meeting, with doctors and researchers scheduled to talk. The FDA will then decide whether to allow scientists at Oregon Health & Science University in Portland, who engineered the approach, to move their testing program from macaque monkeys to woman.

Potentially, the procedure may cut off mitochondrial diseases that are passed down through females and occur in about 1 in 4,000 people. One example is Melas syndrome, which causes a person to have continuing small strokes that damage their brains, leading to vision loss, problems with movement, dementia and death, according to the National Institutes of Health.

“What the FDA needs to think about is that this isn’t a procedure to repair mitochondrial disease,” said Vamsi Mootha, a professor of systems biology and medicine at Harvard Medical School inBoston who studies mitochondrial disorders. “It’s designed to prevent disease. It’s designed to offer a woman who’s a carrier for disease more options.”

Shoukhrat Mitalipov, the researcher heading the Oregon team’s work, declined to comment before the FDA meeting.

Monkey Research

In early research, four macaque monkeys were born from the procedure, according to a 2009 report by the Oregon researchers in the journal Nature. They were reported as healthy at age 3.

In October 2012, Nature published reports that the technique had also been used in human egg cells. The resulting embryos were allowed to develop to the blastocyst stage, which usually occurs about five days after fertilization.

About half of the egg cells displayed normal development, the scientists found. Though the procedure is legal in the laboratory, the embryos that result from it can’t be implanted in women without the FDA’s consent, leading to today’s session.

There are two types of DNA: nuclear, which is handed down by both parents, and mitochondria, which only comes from the mother. The technology replaces a donor’s nuclear DNA, which determines things like hair color and intelligence, with the same material from the prospective mother, leaving the healthy mitochondria from the donor in place.

The new lab-made egg is then fertilized with the father’s sperm in vitro and implanted in the mother’s womb.

This isn’t the first time that scientists have attempted to disrupt the actions of mitochondria DNA to help fight disease, or the first time the FDA has considered the issue.

Earlier Method

From 1997 to 2003, about 30 children worldwide were born using a method that injected donor mitochondria DNA into eggs after they were fertilized. The first baby born with this technique wasreported in 1997. In 2003, though, the FDA told fertility clinics that genetically manipulated embryos were considered a biological product, and subject to regulation, essentially halting the technique in humans.

The lives of those children should be thoroughly investigated before the new procedure is cleared for use in a human trial, said Sheldon Krimsky, a professor of Urban & Environmental Policy & Planning at Tufts University in Boston.

Ethical Issues

In the 1982 position paper, “Splicing Life,” the President’s Commission for the Study of Ethical Problems in Medicine and Biomedical and Behavioral Research made a distinction between gene therapy that takes place after someone is born compared with manipulation that occurs before, altering the body’s genome.

There was broad consensus that the latter, called germ-line engineering, shouldn’t be pursued, said Krimsky, who was one of the consultants for the paper. That changed “starting in the late 1990s, when people started whittling away at that distinction,” he said in a telephone interview.

“You’re altering the genome of an unborn child, someone who can’t make a judgment about whether they want to be genetically modified,” Krimsky said by telephone. “What will be next, once you allow this?”

Scientists also are concerned that the procedure may not be safe, according to a paper in September 2013 in the journal Science, whose lead author was evolutionary biologist Klaus Reinhardt at the University of Tuebingen in Germany.

Reinhardt’s paper noted that male mice bred from this technique sometimes had altered breathing, as well as reduced learning and exploring capabilities, according to earlier research. Female mice weren’t tested.

The research in mice suggests that the replacement technique may destroy some lines of communication between mitochondria and the cell’s transplanted nucleus, Reinhardt’s editorial said. Though the macaque monkeys don’t show the same problems, there may be long-term issues from the DNA replacement, he wrote.

(來源:中國日報網愛新聞iNews 編輯:丹妮)

 
中國日報網英語點津版權說明:凡注明來源為“中國日報網英語點津:XXX(署名)”的原創作品,除與中國日報網簽署英語點津內容授權協議的網站外,其他任何網站或單位未經允許不得非法盜鏈、轉載和使用,違者必究。如需使用,請與010-84883631聯系;凡本網注明“來源:XXX(非英語點津)”的作品,均轉載自其它媒體,目的在于傳播更多信息,其他媒體如需轉載,請與稿件來源方聯系,如產生任何問題與本網無關;本網所發布的歌曲、電影片段,版權歸原作者所有,僅供學習與研究,如果侵權,請提供版權證明,以便盡快刪除。
 

關注和訂閱

人氣排行

翻譯服務

中國日報網翻譯工作室

我們提供:媒體、文化、財經法律等專業領域的中英互譯服務
電話:010-84883468
郵件:[email protected]
 
 
主站蜘蛛池模板: 视频一区二区国产无限在线观看 | 亚洲成年人网址 | 欧美成人香蕉网在线观看 | 欧美日韩国产一区二区三区欧 | 女人色毛片女人色毛片中国 | 不卡一级毛片免费高清 | 性生生活网站免费 | 国产精品你懂的 | 美女喷液 | 色欲综合视频天天天 | 欧美aaa级片 | 中文日产国产精品久久 | 九九在线免费视频 | 男女动态视频在线观看 | 国产一区二区三区视频 | 99亚洲精品高清一二区 | 在线观看a级片 | 成人在线网 | 中国女人真人一级毛片 | 不卡在线观看 | 国产伦精品一区二区三区免费 | 国产精品午夜高清在线观看 | 色婷婷5月精品久久久久 | 国产亚洲精品一区二区久久 | 萌白酱福利视频在线网站 | 欧美一级毛片片aa视频 | 精品一级毛片 | 91探花福利精品国产自产在线 | 夜鲁鲁鲁夜夜综合视频欧美 | 亚洲区欧美中文字幕久久 | 亚洲成人网在线观看 | 91福利精品老师国产自产在线 | 欧美高清视频www夜色资源网 | 日韩在线观看一区 | 在线视频 91 | 99热在线免费观看 | 黄www.| 亚洲精品96欧美一区二区 | 免费观看国产大片资源视频 | 国产成人午夜性a一级毛片 国产成人午夜性视频影院 国产成人香蕉久久久久 | 91成人高清在线播放 |